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Physical measurements of vegetation range shifts 

Plant range shift is difficult to measure in-situ, since the geographic distributions of plants surpass the limits of 

physical survey capabilities, as well as difficulties measuring changes temporally due to logistical constraints 

(Morin and Thuiller, 2009). Small-scale experimental studies where patches of land are manipulated to control 

for temperature and precipitation go some way to predict the ecological drivers of shifting, but are challenging 

to upscale to an extent that includes or measures all the potential factors at play. Equally, long-term monitoring 

studies of forest plots which include re-surveys, and consistently collected data on phenology, do support 

observed measurements of changes to species abundance, but are not designed to assess range shift per se. 

Therefore, most studies on terrestrial plant range shift to date are conducted by computer modelling (Thuiller, 

2007).  

Computer modelling of vegetation range shifts 

Vegetation shifts are modelled in many ways, and multiple metrics can be used to measure different 

components of shift distance, shape, and speed. Before any predictions can be made, the species in question 

must have a quantifiable known range for the current time from which to measure any differences in the future. 

Yalcin and Leroux (2017), defined six popular methods for measuring current species ranges: observational-

based studies, grid-based maps converted from presence data, the drawing of convex hulls around the spatial 

limit of known points, interpolation techniques such as kriging, species distribution models (SDM) using software 

like MaxEnt, or hybrid approaches (Yalcin and Leroux, 2017). They showed in their review of range shift 

predictions for all taxa (2013-14) that SDM usage surpassed all other mentioned methods for studying changes 

to current and future range limits, size or suitability/probability of occurrence (Yalcin and Leroux, 2017).  

Statistical modelling approaches 

Statistical modelling approaches such as Maxent have been common since the mid 2000’s to support range shift 

predictions. This correlative approach is straightforward to use, generates almost instantaneous, accurate 

results and requires no licence fee (Merow et al., 2013). Correlative model limitations are well documented by 

its authors and users, (Clark et al., 2010, García-Valdés, 2013, Pompe et al., 2008, Zwiener et al., 2018), where a 

fundamental disadvantage is the assumption that species are in equilibrium with the environment and climate, 

which is often not the case (García-Valdés, 2013, Svenning and Sandel, 2013, Rohde, 2006). Many correlative-

based approaches highlight the effectiveness of process-based (PB) model equivalents due to their ability to 

incorporate dispersal and other biotic interactions (Fitzpatrick et al., 2008, Shrestha et al., 2018, Zhang et al., 

2020), but still neglect to parameterise such a model, citing the difficulties in identifying, quantifying and 

inclusion in models (Birhane et al., 2020, Vieilledent et al., 2013). 

Process-based modelling approaches 

The uptake of process-based (PB) models in the context of range shift has been slow. This is likely due to the 

additional parameters required to build these types of models, when compared with correlative models that can 



Strengths and weaknesses of existing theories for predicting vegetation range shift 

Author: ELU, for PROCEED  Date: Feb 2023 

predict with “top-down” bioclimatic variables such as temperature and precipitation. For PB models to be more 

widely used, data on phenology, physiology and dispersal need to be available on a mass scale. Initiatives such 

as the TRY plant traits database (Kattge et al., 2020), go some way to reducing this data gap specifically for traits, 

but depending on the species, country, or study context, acquiring these data is not always possible. For 

example, a particular problem with plants (compared to animal shifts) is that ‘dispersal’ as a model parameter 

is not a straightforward measurement to capture or predict, given a value could be vastly different depending 

on seed size, environmental conditions, and individual biotic interactions. This is especially true in the case of 

long-term dispersal events which could be one of the main mechanisms that allow plants to track the current 

rate of climate change (Cain et al., 2000). 

Quantifying measurements of range shift (range shift metrics) 

Calculations to measure range shift are inferred from habitat net change (the area difference between the 

current and future predicted ranges), habitat direction change (the up/downslope travel for elevational shifting), 

or rate of change, an index for assessing whether species may be able to track climate change velocity (Choe et 

al., 2017, Radinger et al., 2017, Yesuf et al., 2021). There are also species and habitat specific measurements, 

such as the Predicted Area of Habitat (PAOH) coined by the International Union for the Conservation of Nature 

(IUCN) which may be more suitable for individual populations of a selected species (IUCN, 2022). To our 

knowledge there is no single agreed metric to which all range shift measurements on taxa are made. This makes 

it difficult to cross-compare studies, species, and geographies to understand trends and wider conservation 

impacts. Yet, providing a quantitative measure of range shift with one of the aforementioned is more robust 

than supplying a continuous probability of occurrence. Numbers extracted from calculating range shift metrics 

can be directly fed into conservation strategies and support decision making surrounding the taxa under 

investigation. 
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